ACO The ACO Seminar (2021–2022)

November 11, 3:30pm, Wean 8220
Xiaoyu He, Princeton University
Long common subsequences between bitstrings

Abstract:

A binary code of positive rate is a subset of {0,1}^n with size exponentially large in n. In any binary code of positive rate, one can find two codewords sharing the same majority bit and thus a common subsequence of length at least n/2. Surprisingly, whether this trivial constant 1/2 could be improved was a longstanding open problem in coding theory, and we solve it in a strengthened form. That is, we show that there exist A, c > 0 such that among any 2^{(log n)^A} bitstrings of length n, some two have a common subsequence of length at least (1/2 + c)n. In the language of coding theory, this means that the zero-rate threshold for coding against adversarial bit-deletion is strictly less than 1/2. The main idea of the proof is to develop a classification system for bitstrings according to their "oscillation patterns," very roughly analogous to Fourier phases; one key ingredient of this classification is a new entropy-increment variant of the string regularity lemma of Axenovitch, Person, and Puzynina. Joint work with Venkatesan Guruswami and Ray Li.


Back to the ACO home page Back to the ACO Seminar schedule