Abstract:
We consider the perfect matching, hamiltonicity and k-connectivity games played on a sparse random board G(n,p), p>=polylog(n)/n. It is clear that Maker needs at least n/2, n, kn/2 moves to win these games, respectively. We prove that G(n,p) is typically such that Maker has a strategy to win within n/2+o(n), n+o(n), kn/2+o(n) moves, respectively. We also show a connection between fast strategies in Maker-Breaker games (weak games) and Maker-Maker games (strong games).
Joint work with Dennis Clemens, Anita Liebenau and Michael Krivelevich.